3.7.93 \(\int \frac {\sqrt [3]{x}}{(a+b x)^3} \, dx\) [693]

3.7.93.1 Optimal result
3.7.93.2 Mathematica [A] (verified)
3.7.93.3 Rubi [A] (verified)
3.7.93.4 Maple [A] (verified)
3.7.93.5 Fricas [B] (verification not implemented)
3.7.93.6 Sympy [F(-1)]
3.7.93.7 Maxima [A] (verification not implemented)
3.7.93.8 Giac [A] (verification not implemented)
3.7.93.9 Mupad [B] (verification not implemented)

3.7.93.1 Optimal result

Integrand size = 13, antiderivative size = 143 \[ \int \frac {\sqrt [3]{x}}{(a+b x)^3} \, dx=-\frac {\sqrt [3]{x}}{2 b (a+b x)^2}+\frac {\sqrt [3]{x}}{6 a b (a+b x)}-\frac {\arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt {3} \sqrt [3]{a}}\right )}{3 \sqrt {3} a^{5/3} b^{4/3}}+\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{6 a^{5/3} b^{4/3}}-\frac {\log (a+b x)}{18 a^{5/3} b^{4/3}} \]

output
-1/2*x^(1/3)/b/(b*x+a)^2+1/6*x^(1/3)/a/b/(b*x+a)+1/6*ln(a^(1/3)+b^(1/3)*x^ 
(1/3))/a^(5/3)/b^(4/3)-1/18*ln(b*x+a)/a^(5/3)/b^(4/3)-1/9*arctan(1/3*(a^(1 
/3)-2*b^(1/3)*x^(1/3))/a^(1/3)*3^(1/2))/a^(5/3)/b^(4/3)*3^(1/2)
 
3.7.93.2 Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.95 \[ \int \frac {\sqrt [3]{x}}{(a+b x)^3} \, dx=\frac {\frac {3 a^{2/3} \sqrt [3]{b} \sqrt [3]{x} (-2 a+b x)}{(a+b x)^2}-2 \sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )+2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )-\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} \sqrt [3]{x}+b^{2/3} x^{2/3}\right )}{18 a^{5/3} b^{4/3}} \]

input
Integrate[x^(1/3)/(a + b*x)^3,x]
 
output
((3*a^(2/3)*b^(1/3)*x^(1/3)*(-2*a + b*x))/(a + b*x)^2 - 2*Sqrt[3]*ArcTan[( 
1 - (2*b^(1/3)*x^(1/3))/a^(1/3))/Sqrt[3]] + 2*Log[a^(1/3) + b^(1/3)*x^(1/3 
)] - Log[a^(2/3) - a^(1/3)*b^(1/3)*x^(1/3) + b^(2/3)*x^(2/3)])/(18*a^(5/3) 
*b^(4/3))
 
3.7.93.3 Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 147, normalized size of antiderivative = 1.03, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {51, 52, 70, 16, 1082, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [3]{x}}{(a+b x)^3} \, dx\)

\(\Big \downarrow \) 51

\(\displaystyle \frac {\int \frac {1}{x^{2/3} (a+b x)^2}dx}{6 b}-\frac {\sqrt [3]{x}}{2 b (a+b x)^2}\)

\(\Big \downarrow \) 52

\(\displaystyle \frac {\frac {2 \int \frac {1}{x^{2/3} (a+b x)}dx}{3 a}+\frac {\sqrt [3]{x}}{a (a+b x)}}{6 b}-\frac {\sqrt [3]{x}}{2 b (a+b x)^2}\)

\(\Big \downarrow \) 70

\(\displaystyle \frac {\frac {2 \left (\frac {3 \int \frac {1}{\frac {a^{2/3}}{b^{2/3}}-\frac {\sqrt [3]{x} \sqrt [3]{a}}{\sqrt [3]{b}}+x^{2/3}}d\sqrt [3]{x}}{2 \sqrt [3]{a} b^{2/3}}+\frac {3 \int \frac {1}{\frac {\sqrt [3]{a}}{\sqrt [3]{b}}+\sqrt [3]{x}}d\sqrt [3]{x}}{2 a^{2/3} \sqrt [3]{b}}-\frac {\log (a+b x)}{2 a^{2/3} \sqrt [3]{b}}\right )}{3 a}+\frac {\sqrt [3]{x}}{a (a+b x)}}{6 b}-\frac {\sqrt [3]{x}}{2 b (a+b x)^2}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {\frac {2 \left (\frac {3 \int \frac {1}{\frac {a^{2/3}}{b^{2/3}}-\frac {\sqrt [3]{x} \sqrt [3]{a}}{\sqrt [3]{b}}+x^{2/3}}d\sqrt [3]{x}}{2 \sqrt [3]{a} b^{2/3}}+\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 a^{2/3} \sqrt [3]{b}}-\frac {\log (a+b x)}{2 a^{2/3} \sqrt [3]{b}}\right )}{3 a}+\frac {\sqrt [3]{x}}{a (a+b x)}}{6 b}-\frac {\sqrt [3]{x}}{2 b (a+b x)^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {\frac {2 \left (\frac {3 \int \frac {1}{-x^{2/3}-3}d\left (1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}\right )}{a^{2/3} \sqrt [3]{b}}+\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 a^{2/3} \sqrt [3]{b}}-\frac {\log (a+b x)}{2 a^{2/3} \sqrt [3]{b}}\right )}{3 a}+\frac {\sqrt [3]{x}}{a (a+b x)}}{6 b}-\frac {\sqrt [3]{x}}{2 b (a+b x)^2}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {2 \left (-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{a^{2/3} \sqrt [3]{b}}+\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 a^{2/3} \sqrt [3]{b}}-\frac {\log (a+b x)}{2 a^{2/3} \sqrt [3]{b}}\right )}{3 a}+\frac {\sqrt [3]{x}}{a (a+b x)}}{6 b}-\frac {\sqrt [3]{x}}{2 b (a+b x)^2}\)

input
Int[x^(1/3)/(a + b*x)^3,x]
 
output
-1/2*x^(1/3)/(b*(a + b*x)^2) + (x^(1/3)/(a*(a + b*x)) + (2*(-((Sqrt[3]*Arc 
Tan[(1 - (2*b^(1/3)*x^(1/3))/a^(1/3))/Sqrt[3]])/(a^(2/3)*b^(1/3))) + (3*Lo 
g[a^(1/3) + b^(1/3)*x^(1/3)])/(2*a^(2/3)*b^(1/3)) - Log[a + b*x]/(2*a^(2/3 
)*b^(1/3))))/(3*a))/(6*b)
 

3.7.93.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 51
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && ILtQ[m, -1] && FractionQ[n] && GtQ[n, 0]
 

rule 52
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((b*c - a*d)*(m + 1))), x] - Simp[d*(( 
m + n + 2)/((b*c - a*d)*(m + 1)))   Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], 
x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
 

rule 70
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[ 
{q = Rt[-(b*c - a*d)/b, 3]}, Simp[-Log[RemoveContent[a + b*x, x]]/(2*b*q^2) 
, x] + (Simp[3/(2*b*q)   Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*x)^(1 
/3)], x] + Simp[3/(2*b*q^2)   Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], 
 x])] /; FreeQ[{a, b, c, d}, x] && NegQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 
3.7.93.4 Maple [A] (verified)

Time = 0.11 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.92

method result size
derivativedivides \(\frac {\frac {x^{\frac {4}{3}}}{6 a}-\frac {x^{\frac {1}{3}}}{3 b}}{\left (b x +a \right )^{2}}+\frac {\frac {\ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}}{3 b a}\) \(132\)
default \(\frac {\frac {x^{\frac {4}{3}}}{6 a}-\frac {x^{\frac {1}{3}}}{3 b}}{\left (b x +a \right )^{2}}+\frac {\frac {\ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}-\frac {\ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{6 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}+\frac {\sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {2}{3}}}}{3 b a}\) \(132\)

input
int(x^(1/3)/(b*x+a)^3,x,method=_RETURNVERBOSE)
 
output
3*(1/18/a*x^(4/3)-1/9*x^(1/3)/b)/(b*x+a)^2+1/3/b/a*(1/3/b/(a/b)^(2/3)*ln(x 
^(1/3)+(a/b)^(1/3))-1/6/b/(a/b)^(2/3)*ln(x^(2/3)-(a/b)^(1/3)*x^(1/3)+(a/b) 
^(2/3))+1/3/b/(a/b)^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2/(a/b)^(1/3)*x^(1/3 
)-1)))
 
3.7.93.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 231 vs. \(2 (102) = 204\).

Time = 0.24 (sec) , antiderivative size = 501, normalized size of antiderivative = 3.50 \[ \int \frac {\sqrt [3]{x}}{(a+b x)^3} \, dx=\left [\frac {3 \, \sqrt {\frac {1}{3}} {\left (a b^{3} x^{2} + 2 \, a^{2} b^{2} x + a^{3} b\right )} \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \log \left (\frac {2 \, a b x - a^{2} + 3 \, \sqrt {\frac {1}{3}} {\left (2 \, a b x^{\frac {2}{3}} - \left (a^{2} b\right )^{\frac {1}{3}} a + \left (a^{2} b\right )^{\frac {2}{3}} x^{\frac {1}{3}}\right )} \sqrt {-\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} - 3 \, \left (a^{2} b\right )^{\frac {1}{3}} a x^{\frac {1}{3}}}{b x + a}\right ) - {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x^{\frac {2}{3}} + \left (a^{2} b\right )^{\frac {1}{3}} a - \left (a^{2} b\right )^{\frac {2}{3}} x^{\frac {1}{3}}\right ) + 2 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x^{\frac {1}{3}} + \left (a^{2} b\right )^{\frac {2}{3}}\right ) + 3 \, {\left (a^{2} b^{2} x - 2 \, a^{3} b\right )} x^{\frac {1}{3}}}{18 \, {\left (a^{3} b^{4} x^{2} + 2 \, a^{4} b^{3} x + a^{5} b^{2}\right )}}, \frac {6 \, \sqrt {\frac {1}{3}} {\left (a b^{3} x^{2} + 2 \, a^{2} b^{2} x + a^{3} b\right )} \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}} \arctan \left (-\frac {\sqrt {\frac {1}{3}} {\left (\left (a^{2} b\right )^{\frac {1}{3}} a - 2 \, \left (a^{2} b\right )^{\frac {2}{3}} x^{\frac {1}{3}}\right )} \sqrt {\frac {\left (a^{2} b\right )^{\frac {1}{3}}}{b}}}{a^{2}}\right ) - {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x^{\frac {2}{3}} + \left (a^{2} b\right )^{\frac {1}{3}} a - \left (a^{2} b\right )^{\frac {2}{3}} x^{\frac {1}{3}}\right ) + 2 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \left (a^{2} b\right )^{\frac {2}{3}} \log \left (a b x^{\frac {1}{3}} + \left (a^{2} b\right )^{\frac {2}{3}}\right ) + 3 \, {\left (a^{2} b^{2} x - 2 \, a^{3} b\right )} x^{\frac {1}{3}}}{18 \, {\left (a^{3} b^{4} x^{2} + 2 \, a^{4} b^{3} x + a^{5} b^{2}\right )}}\right ] \]

input
integrate(x^(1/3)/(b*x+a)^3,x, algorithm="fricas")
 
output
[1/18*(3*sqrt(1/3)*(a*b^3*x^2 + 2*a^2*b^2*x + a^3*b)*sqrt(-(a^2*b)^(1/3)/b 
)*log((2*a*b*x - a^2 + 3*sqrt(1/3)*(2*a*b*x^(2/3) - (a^2*b)^(1/3)*a + (a^2 
*b)^(2/3)*x^(1/3))*sqrt(-(a^2*b)^(1/3)/b) - 3*(a^2*b)^(1/3)*a*x^(1/3))/(b* 
x + a)) - (b^2*x^2 + 2*a*b*x + a^2)*(a^2*b)^(2/3)*log(a*b*x^(2/3) + (a^2*b 
)^(1/3)*a - (a^2*b)^(2/3)*x^(1/3)) + 2*(b^2*x^2 + 2*a*b*x + a^2)*(a^2*b)^( 
2/3)*log(a*b*x^(1/3) + (a^2*b)^(2/3)) + 3*(a^2*b^2*x - 2*a^3*b)*x^(1/3))/( 
a^3*b^4*x^2 + 2*a^4*b^3*x + a^5*b^2), 1/18*(6*sqrt(1/3)*(a*b^3*x^2 + 2*a^2 
*b^2*x + a^3*b)*sqrt((a^2*b)^(1/3)/b)*arctan(-sqrt(1/3)*((a^2*b)^(1/3)*a - 
 2*(a^2*b)^(2/3)*x^(1/3))*sqrt((a^2*b)^(1/3)/b)/a^2) - (b^2*x^2 + 2*a*b*x 
+ a^2)*(a^2*b)^(2/3)*log(a*b*x^(2/3) + (a^2*b)^(1/3)*a - (a^2*b)^(2/3)*x^( 
1/3)) + 2*(b^2*x^2 + 2*a*b*x + a^2)*(a^2*b)^(2/3)*log(a*b*x^(1/3) + (a^2*b 
)^(2/3)) + 3*(a^2*b^2*x - 2*a^3*b)*x^(1/3))/(a^3*b^4*x^2 + 2*a^4*b^3*x + a 
^5*b^2)]
 
3.7.93.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt [3]{x}}{(a+b x)^3} \, dx=\text {Timed out} \]

input
integrate(x**(1/3)/(b*x+a)**3,x)
 
output
Timed out
 
3.7.93.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 152, normalized size of antiderivative = 1.06 \[ \int \frac {\sqrt [3]{x}}{(a+b x)^3} \, dx=\frac {b x^{\frac {4}{3}} - 2 \, a x^{\frac {1}{3}}}{6 \, {\left (a b^{3} x^{2} + 2 \, a^{2} b^{2} x + a^{3} b\right )}} + \frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} {\left (2 \, x^{\frac {1}{3}} - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{9 \, a b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} - \frac {\log \left (x^{\frac {2}{3}} - x^{\frac {1}{3}} \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{18 \, a b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} + \frac {\log \left (x^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{9 \, a b^{2} \left (\frac {a}{b}\right )^{\frac {2}{3}}} \]

input
integrate(x^(1/3)/(b*x+a)^3,x, algorithm="maxima")
 
output
1/6*(b*x^(4/3) - 2*a*x^(1/3))/(a*b^3*x^2 + 2*a^2*b^2*x + a^3*b) + 1/9*sqrt 
(3)*arctan(1/3*sqrt(3)*(2*x^(1/3) - (a/b)^(1/3))/(a/b)^(1/3))/(a*b^2*(a/b) 
^(2/3)) - 1/18*log(x^(2/3) - x^(1/3)*(a/b)^(1/3) + (a/b)^(2/3))/(a*b^2*(a/ 
b)^(2/3)) + 1/9*log(x^(1/3) + (a/b)^(1/3))/(a*b^2*(a/b)^(2/3))
 
3.7.93.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 148, normalized size of antiderivative = 1.03 \[ \int \frac {\sqrt [3]{x}}{(a+b x)^3} \, dx=-\frac {\left (-\frac {a}{b}\right )^{\frac {1}{3}} \log \left ({\left | x^{\frac {1}{3}} - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{9 \, a^{2} b} + \frac {\sqrt {3} \left (-a b^{2}\right )^{\frac {1}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, x^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{9 \, a^{2} b^{2}} + \frac {\left (-a b^{2}\right )^{\frac {1}{3}} \log \left (x^{\frac {2}{3}} + x^{\frac {1}{3}} \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{18 \, a^{2} b^{2}} + \frac {b x^{\frac {4}{3}} - 2 \, a x^{\frac {1}{3}}}{6 \, {\left (b x + a\right )}^{2} a b} \]

input
integrate(x^(1/3)/(b*x+a)^3,x, algorithm="giac")
 
output
-1/9*(-a/b)^(1/3)*log(abs(x^(1/3) - (-a/b)^(1/3)))/(a^2*b) + 1/9*sqrt(3)*( 
-a*b^2)^(1/3)*arctan(1/3*sqrt(3)*(2*x^(1/3) + (-a/b)^(1/3))/(-a/b)^(1/3))/ 
(a^2*b^2) + 1/18*(-a*b^2)^(1/3)*log(x^(2/3) + x^(1/3)*(-a/b)^(1/3) + (-a/b 
)^(2/3))/(a^2*b^2) + 1/6*(b*x^(4/3) - 2*a*x^(1/3))/((b*x + a)^2*a*b)
 
3.7.93.9 Mupad [B] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.02 \[ \int \frac {\sqrt [3]{x}}{(a+b x)^3} \, dx=\frac {\frac {x^{4/3}}{6\,a}-\frac {x^{1/3}}{3\,b}}{a^2+2\,a\,b\,x+b^2\,x^2}+\frac {\ln \left (\frac {b^{2/3}}{a^{2/3}}+\frac {b\,x^{1/3}}{a}\right )}{9\,a^{5/3}\,b^{4/3}}+\frac {\ln \left (\frac {b\,x^{1/3}}{a}+\frac {b^{2/3}\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{2\,a^{2/3}}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{18\,a^{5/3}\,b^{4/3}}-\frac {\ln \left (\frac {b\,x^{1/3}}{a}-\frac {b^{2/3}\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{2\,a^{2/3}}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{18\,a^{5/3}\,b^{4/3}} \]

input
int(x^(1/3)/(a + b*x)^3,x)
 
output
(x^(4/3)/(6*a) - x^(1/3)/(3*b))/(a^2 + b^2*x^2 + 2*a*b*x) + log(b^(2/3)/a^ 
(2/3) + (b*x^(1/3))/a)/(9*a^(5/3)*b^(4/3)) + (log((b*x^(1/3))/a + (b^(2/3) 
*(3^(1/2)*1i - 1))/(2*a^(2/3)))*(3^(1/2)*1i - 1))/(18*a^(5/3)*b^(4/3)) - ( 
log((b*x^(1/3))/a - (b^(2/3)*(3^(1/2)*1i + 1))/(2*a^(2/3)))*(3^(1/2)*1i + 
1))/(18*a^(5/3)*b^(4/3))